
Role of liquid compressional viscosity in the dynamics of a sonoluminescing bubble
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The well-known Rayleigh-PlessetsRPd equation is the basis of almost all hydrodynamical descriptions of
single-bubble sonoluminescencesSBSLd. A major deficiency of the RP equation is that it accounts for viscosity
of an incompressible liquid and compressibility, separately. By removing this approximation, a new modifica-
tion of the RP equation is presented considering effect of compressional viscosity of the liquid. This modifi-
cation leads to addition of a new viscous term to the traditional bubble boundary equation. Influence of this
new term in the dynamics of a sonoluminescing bubble has numerically been studied considering effects of
heat transfer at the bubble wall, nonequilibrium evaporation and condensation of water vapor, chemical reac-
tions, and diffusion of the reactions products in the liquid. The results show that the new term has a significant
damping role in the bubble motion at the end of collapse and during the rebounds, so that its consideration
dramatically reduces amplitude of the afterbounces. Dependence of this new damping mechanism on the
driving pressure amplitude and on the ambient radius has been investigated. The results indicate that the more
intense the collapse, the more important the damping of the liquid compressional viscosity.
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I. INTRODUCTION

Non-linear radial oscillations of a small gas bubble in a
liquid under the influence of a high amplitude ultrasound
field concentrate energy into the bubble to produce picosec-
ond light pulses. This phenomenon is known as single-
bubble sonoluminescencesSBSLd [1,2], which was discov-
ered by Gaitan and Crum in 1990[3]. After this discovery, a
large number of experimental as well as theoretical papers
were published describing different characteristics of such
unusual phenomenon, including duration of pulse width
s40–350 psd [4–6], intensity and spectrum of emitted light
[7–10], its dependence to ambient parameters[11–13] and
dissolved gas in the liquid[14], experimental phase dia-
grams,[15–18], and different criteria that a sonoluminescing
bubble must simultaneously satisfy for stability[19–22].

In nearly all existing theoretical descriptions of the
sonoluminescence characteristics, radial dynamics of the
bubble is described by the well-known Rayleigh-Plesset
sRPd equation. Several different forms of the RP equation are
available in the literature derived by many authors[23–30].
One of the most popular ones is the equation derived by
Keller and Miksis[31]:
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whereR, C, P0, Pa, andr are the bubble radius, liquid sound

speed, ambient pressure, driving pressure, and liquid density,
respectively. Equation(1) must be supplemented by a bound-
ary condition equation at the bubble interface to relate the
liquid pressure,Pl, to the gas pressure inside the bubble. In
all existing theoretical analysis of the nonlinear bubble dy-
namics, the following incompressible boundary equation has
been used for this purpose:
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wherePg, m, ands are the gas pressure at the bubble inter-
face, liquid shear viscosity, and surface tension, respectively.
It should be mentioned that the difference of Eq.(1) with the
other first order forms of the RP equation arises from the

terms proportional toṘ/C. Prosperetti and Lezzi showed that
there is a one-parameter family of equations describing the
bubble motion in the first order approximation of the com-
pressibility and Eq.(1) belongs to this family[32].

There is a common part between all forms of the RP
equation. That is the incompressible boundary condition Eq.
(2). We note that this equation has been used even in the
second-order equations derived by previous authors[33,34].
Equation(2) is derived under a specific approximation. That
is the incompressibility assumption of the liquid motion at
the bubble interface. We emphasize that all effects of the
liquid compressibility in the RP equation arise from the liq-
uid motion around the bubble, but not from the bubble
boundary condition equation. In fact, in all forms of the RP
equation, a compressible equation[Eq. (1)] has been supple-
mented by an incompressible boundary condition equation
[Eq. (2)]. This means that all forms of the RP equation ac-
count for viscosity of an incompressible liquid and com-
pressibility, separately.*Electronic address: moshaii@ipm.ir
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For strongly driven bubbles, such as sonoluminescing
bubbles, the incompressibility approximation in Eq.(2) is
reasonably applicable for all times before the collapse, due to
the incompressibility characteristics of the bubble motion.
However, at the collapse time, when the bubble becomes
highly compressed, the incompressibility assumption is com-
pletely violated. Therefore, it is expected that the neglected
compressibility effect at the bubble boundary becomes quite
important. Since the sonoluminescence radiation is produced
at the end of collapse, modification of Eq.(2) with the com-
pressibility effect is essential for a better description of
sonoluminescence characteristics.

In this paper, we present a new modification of the RP
equation considering effect of compressional viscosity of the
liquid. This modification leads to a new viscous term includ-
ing two coefficients of viscosity, which is added to the tradi-
tional bubble boundary equation[Eq. (2)]. The influence of
this term on the dynamics of a sonoluminescing bubble has
numerically been investigated using an ODE hydrochemical
model. The results clearly emphasize the importance of the
liquid compressional viscosity at the collapse time and dur-
ing the sonoluminescence radiation.

II. COMPRESSIBLE BUBBLE BOUNDARY EQUATION

To derive the compressible bubble boundary equation, we
assume that the motions of the bubble interface and the sur-
rounding liquid are always spherically symmetric. The con-
tinuity equation and the radial component of the stress ten-
sor, trr , can be written as[35]
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where r, p, and uW =ur̂ are density, pressure, and velocity
vector, respectively. Also,l is second coefficient of viscos-
ity. Inserting]u/]r from Eq. (3) into Eq. (4) yields
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From Eq.(3), the velocity divergence can be written as
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where the sound speed,C, is defined asC2=dp/dr. The
boundary continuity requirement at the bubble interface is

trrsliquiddR=trrsgasdR + 2
s

R
. s7d

Applying Eq. (5) for the gas and the liquid parts of Eq.(7)
and neglecting the gas viscosity similar to Eq.(2), due to its
smallness relative to the liquid viscosity, leads to

Pl + 4
mṘ
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Substituting the divergence of liquid velocity at the bubble
wall from Eq. (6) into Eq. (8) yields
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Equation(9) is the modified form of Eq.(2) including effect
of the liquid compressibility. We note that Eqs.(1) and (9)
provide a new modification of the RP equation, which ac-
counts for viscosity of a compressible liquid. The added new
term of Eq. (9) includes simultaneous effects of the liquid
compressibility and viscosity. Since, Eq.(9) is more com-
plete than Eq.(2), it is more appropriate for description of
the bubble dynamics, especially during the sonolumines-
cence radiation.

III. BUBBLE INTERIOR EVOLUTION

To quantify effects of the new viscous term on the bubble
dynamics, evolution of the gas pressure at the bubble inter-
face,Pg, must be specified. The model that we use here for
this purpose is the recent hydrochemical ODE model of
Lohseet al. [36–38], which accounts for effects of heat and
mass transfer at the bubble interface as well as chemical
reactions. This model appropriately describes various experi-
mental phase diagrams and provides a good agreement with
the complete direct numerical simulation of Storey and Szeri
[39].

We describe an argon bubble in water, which is the final
state of an air SL bubble, according to the rectified diffusion
hypothesis[40]. The bubble contents are the noncondensable
argon gas, water vapor, and the main chemical reactions
products at the end of collapse, which are H, H2, OH, O2,
and O. The number of particles inside the bubble changes
with time, due to diffusion at the bubble wall and the chemi-
cal reactions. The gas pressure is obtained by Eqs.(3)–(16)
of Ref. [38], which are not repeated here. These equations
along with the bubble dynamics equations are the set of
equations that totally describe the evolution of the bubble
characteristics. Under these circumstances, in this work, time
variations of the bubble properties have numerically been
calculated for both the new and the old RP equations.

IV. NUMERICAL ANALYSIS

The calculations were carried out for a periodic driving
pressure:Pastd=Pasinsvtd, with v=2p326.5 kHz. The con-
stants and parameters were set for water at room tempera-
ture, T0=293.15 K, and atmospheric ambient pressure,P0
=1.0 atm; i.e., r=998.0 kg/m3, C=1483.0 m/s, m=1.01
310−3 kg/ms, ands=0.0707 kgs−2 [41]. The second coeffi-
cient of viscosity of water at room temperature was setl
=3.43310−3 kg/ms [42].

Figures 1–4 illustrate the results forPa=1.35 atm and
R0=4.5 mm. Similar values for these phase parameters have
been reported in several recent experimental works[15–18].
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Figure 1 shows the calculated radius-time curves for the new
and the old RP equations. It is seen that the new viscous term
considerably affects the bubble evolution at the end of col-
lapse and during the rebounds. Since the bubble motion is
quite compressible at the end of collapse, the new term,
which resulted from the liquid compressibility, is important
in this time interval. It exhibits a damping role and its con-
sideration reduces strength of the collapse. This damping ap-
pears in the increase of the minimum radius for the new
equation relative to that of the old one[about 10% in Fig.
1(c)]. Also, the reduction of the collapse intensity remark-
ably diminishes the amplitude of the afterbounces, which is
accompanied with the decrease in time interval between two
successive rebounds[Fig. 1(b)].

In many experimental data for the bubble radius available
in the literature(e.g., Fig. 1 of Ref.[29] and Figs. 14 and 16
of Ref. [1]), it is seen that the bubble rebounds are rapidly
damped, which is in contrast with what various old RP forms
predict. Mosset al. suggested a damping term arisen from
the gas compressibility to solve this problem[43]. The influ-
ence of their suggested gas-based term is very similar to the
damping effect of liquid compressional viscosity(compare
Fig. 1 with Figs. 2–6 of Ref.[43]. This similarity indicates
that the modified RP equation presented here should be in a
better agreement with experimental data than the traditional
forms.

In Fig. 2, the gas temperature evolution during the re-
bounds and at the end of collapse are shown. The damping
feature of the new term is seen in the considerable decrease
of the maximum temperature(about 40%) as well as in the
reduction of the magnitudes of the secondary peaks[Fig.
2(a)]. We note that the pulse width of the main peak in-
creases with the addition of the new term[Fig. 2(b)].

Figure 3 shows the evolution of total number of particles
species inside the bubble,Ntot, for both the new and the old
RP cases. The number of molecules considerably increases
in the expansion region due to evaporation of vapor mol-
ecules from the surrounding liquid into the bubble. During
the collapse, the vapor molecules inside the bubble rapidly
condense to the liquid. Chemical reactions only occur at the

FIG. 1. Time variations of the bubble radius for a sonoluminesc-
ing bubble with parameters spaceR0=4.5 mm and Pa=1.35 atm,
according to the new(solid) and the old RP(dashed) equations.
Graph(a) shows the bubble evolution during a complete periodsTd.
Graphs(b) and (c) show the radius variations during the rebounds
and at the end of collapse, respectively.

FIG. 2. The evolution of the bubble temperature during the re-
bounds(a), and at the end of the collapse(b), according to the new
(solid) and the old RP(dashed) equations for the same parameters
and constants as in Fig. 1.
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end of collapse, when the bubble temperature is enough high
to destroy chemical bands of the vapor molecules[44]. It is
seen that a considerable difference between the two cases in
the number of molecules appears during the bubble re-
bounds. This difference gradually disappears as the bubble
rebounds weaken.

Influence of the new term on the evolution of water vapor
molecules and the reaction products at the end of collapse
has been shown in Fig. 4. It shows that considerable differ-
ences exist between the number of molecules of the two
cases. We note that the peaks in the new case are wider than
those of the old RP case.

The illustrated damping of the compressional viscosity at
the end of collapse and during the rebounds affects some of
the previous theoretical analyses of nonlinear bubble dynam-
ics. Two special examples are stability limits of strongly col-
lapsing bubbles and the magnitude of light emission from the
SL bubbles. The bubble instability is very sensitive to the
collapse intensity and the rebounds thereafter. Also, the
amount of light emission and the spectrum of the emitted
light strongly depend on the maximum temperature achiev-
able. As we showed in Figs. 1–4, these characteristics are
dramatically affected by the addition of the new term.

In Figs. 5 and 6, we have presented dependence of the
maximum temperature and the compression ratios

=Rmax/Rmin on the variation of phase parameters(Pa and
R0). The different values ofPa, corresponding to a specific
value of R0, can be experimentally obtained by proper ad-
justing of the dissolved gas concentration in the liquid[1].

Figure 5 shows the maximum temperature and compres-
sion ratio as a function of the driving pressure amplitude. As
it is expected, the collapse intensity increases when the pres-
sure amplitude is amplified. It is seen that the addition of the
new term to the RP equation always decreases both the
maximum temperature and the compression ratio. The damp-
ing effect is more considerable for higher driving pressures
(about 100% difference in the maximum temperature for
Pa=1.5 atm).

Figure 6 represents the dependence of the maximum tem-
perature and the compression ratio on the ambient radius.
The damping feature of the new term also exists here. Simi-
lar to Fig. 5, this figure also shows that the difference be-
tween the two cases increases when the collapse intensity is
enhanced by the reduction of the ambient radius.

V. CONCLUSIONS

All traditional forms of the RP equation have a common
deficiency. They account for viscosity of an incompressible
liquid and compressibility, separately. This deficiency was
removed by introducing a more complete bubble boundary
equation containing effect of liquid compressional viscosity.
The derived equation has a new term including two coeffi-
cients of viscosity. This term is important at the collapse time
of a strongly driven bubble, e.g., a sonoluminescing bubble.
The new term has a damping role and its consideration re-
duces the collapse intensity and the amplitude of the after-

FIG. 3. Time variations of the total number of particles species
inside the bubble, according to the new(solid) and the old RP
(dashed) equations. Graphs(a) and (b) show the evolution in a
complete period and during the rebounds, respectively. The param-
eters and constants are the same as in Fig. 1.

FIG. 4. The number of molecules of water vapor and the reac-
tion products at the end of the collapse, for the new and the old RP
cases for the same parameters and constants as in Fig. 1.
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bounces. The more intense the collapse, the more significant
the damping of the liquid compressional viscosity.

The new effect also results in a lower maximum tempera-
ture of the bubble. This should lead to a decrease in the
amount of light emission as well as to a significant change in
the spectrum of the emitted light. Most of previous experi-
mental reports show that the SBSL spectrum is best approxi-
mated by black body radiation[45–47]. However, the calcu-
lated lower peak temperatures present a problem for
theoretical description of the measured Planck spectrum and
for prediction of its maximum, which is clearly displayed in
the experiments[46,47]. This problem may be resolved by
considering nonuniform energy focusing inside the bubble.
As indicated in nonuniform simulations[8,48,49], the occur-
rence of shock waves inside a sonoluminescing bubble con-
siderably raises the peak temperature at the bubble center,
which can diminish the low temperature problem.

On the other hand, the findings of this paper should affect
previous theoretical predictions of the bubble stability limits
[19–22,37,38]. This may restrict the bubble phase parameters
(Pa and R0) to the values that push upward the maximum

temperature. In previous works[19,22], it is shown that the
shape stability restricts the ambient radius of a high pressure
driven bubble sPa*1.5 atmd to the smaller sizessR0

&4.0 mmd. The maximum temperature increases with the
reduction in the ambient radius(Fig. 6), and this may resolve
the temperature problem for strongly driven bubbles.

By comparing the results of this work with the similar
results of Mosset al. [43], the derived new equation seems to
be in a better agreement with experimental data than the
traditional RP forms.
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FIG. 5. The maximum temperature of the bubble(a), and the
compression ratios=Rmax/Rmin (b), as a function of the driving
pressure amplitude for the new(solid) and the old RP(dashed)
equations. The equilibrium radius is fixedsR0=4.5 mmd. Other
constants are the same as in Figs. 1–4.

FIG. 6. The dependence of the maximum temperature(a), and
the compression ratio(b), on the ambient radius for both the new
(solid) and the old RP(dashed) equations. The pressure amplitude is
fixed sPa=1.35 atmd and the other constants are the same as in Figs.
1–4.
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